Research Progress

Exploitation of Biology Resource

Screening of lipase inhibitors from Scutellaria baicalensis extract using lipase immobilized on magnetic nanoparticles and study on the inhibitory mechanism

Update time: 10/22/2016

Scutellaria baicalensis is a traditional Chinese medicinal plant possessing a wide variety of biological activities. In this work, lipase immobilized on magnetic nanoparticles (LMNPs) was used as solid phase extract absorbent for screening of lipase inhibitors from this plant. Three flavonoids were found to bind to LMNPs and were identified as baicalin, wogonin, and oroxylin A by liquid chromatography–mass spectrometry (HPLC-MS). Their IC50 values were determined to be 229.22 ± 12.67, 153.71 ± 9.21, and 56.07 ± 4.90 μM, respectively. Fluorescence spectroscopy and molecular docking were used to probe the interactions between these flavonoids and lipase. All the flavonoids quenched the fluorescence of lipase statically by forming new complexes, implying their affinities with the enzyme. The thermodynamic analysis suggested that van der Waals force and hydrogen bond were the main forces between wogonin and lipase, while hydrophobic force was the main force for the other two flavonoids. The results from a molecular docking study further revealed that all of them could insert into the pocket of lipase binding to a couple of amino acid residues.