This study investigated the possibilities of improving the biogasification from solid-state anaerobic digestion (SS-AD) of composting rice straw (RS) based on the optimized digestion temperature, initial substrate concentration (ISC) and C/N ratio. RS compounds, such as lignin, cellulose, and hemicellulose, were significantly degraded after composting. A significant interactive effect of temperature, ISC and C/N ratio was found on the biogasification of SS-AD of composting RS, and a maximum biogas production was achieved at 35.6 degrees C, with a 20% ISC and a C/N ratio of 29.6:1.
The verification experiment confirmed the optimization results. High-throughput sequencing analysis indicated that microbial communities in the SS-AD mainly consist of Methanobacteria, Bacteroidia, Clostridia, Betaproteobacteria, and Gammaproteobacteria. A dominant Methanobacteria was shifted from Methanobacterium to Methanoculleus during the SS-AD process. This study provides novel information about the interdependent effects and microbial behavior of AD.
This research has been conducted by researchers from Chengdu Institute of Biology.